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ABSTRACT

While specialized AI models excel at isolated video tasks like generation or un-
derstanding, real-world applications demand complex, iterative workflows that
combine these capabilities. To bridge this gap, we introduce UniVA, a multi-
agent framework for universal video intelligence that unifies video understanding,
segmentation, editing, and generation in complex workflows. UniVA employs
a Plan-and-Act dual-agent architecture: a planner agent decomposes high-level
user requests into a sequence of video-processing steps, and executor agents carry
out these steps using specialized modular tool servers (for video analysis, genera-
tion, editing, object tracking, etc.). Through a multi-level memory design (global
knowledge, task context, and user-specific memory), UniVA supports long-
horizon reasoning and inter-agent communication while maintaining full trace-
ability of each action. This design enables iterative and composite video work-
flows (e.g., image → video generation → video editing → object segmentation
→ content composition) that were previously cumbersome to achieve with single-
purpose models or monolithic video-language models. We also introduce UniVA-
Bench, a benchmark suite of multi-step video tasks spanning understanding, edit-
ing, segmentation, and generation, to rigorously evaluate such agentic video sys-
tems. Both UniVA and UniVA-Bench are open-sourced to the community, with
the aim of catalyzing next-generation video intelligence research. All the code,
data, and demos are anonymized at https://univa-agent.github.io/

1 INTRODUCTION

Real-world video applications often require composite, iterative workflows that go beyond any sin-
gle AI capability (Yu et al., 2023; Maazi et al., 2024; Song et al., 2024). For example, creating a
dynamic visual story might begin with an image or text concept, expand into a generated video, then
involve editing that video, segmenting key objects, and finally composing multiple elements into
a polished scene. Traditionally, accomplishing such a pipeline requires stitching together disparate
tools—each specialized for a narrow task—resulting in a brittle, labor-intensive process. The lack of
a unified system for reasoning across multiple video tasks and steps has become a critical bottleneck
for next-generation video intelligence.

Existing approaches address parts of this challenge but fall short of a unified solution. Single-task
video models (e.g., dedicated networks for segmentation or video generation) deliver high perfor-
mance on their specific tasks, yet they operate in isolation and fail to handle multi-step goals without
manual coordination. More recently, unified video-language foundation models like VILA-U (Wu
et al., 2024b) attempt to integrate understanding and generation into one model. These large models
learn a broad spectrum of abilities (Fei et al., 2024; Xie et al., 2025; Tan et al., 2025), but they remain
monolithic and inflexible – they cannot easily incorporate new tools or modular functions, and lever-
aging them for complex workflows can be inefficient or impractical. Another emerging direction is
to use LLM-based agents with tool use. For instance, HuggingGPT employs a language model
as a controller to plan tasks and invoke appropriate models/tools in sequence (Shen et al., 2023).
Similarly, VideoAgent leverages an LLM with a structured memory and a predefined set of video
tools to answer questions on long videos (Fan et al., 2024b). These agent-based systems illustrate
the power of planning and tool use (Kugo et al., 2025; Wei et al., 2025). However, HuggingGPT is a
generalist framework not specialized for detailed video operations, and VideoAgent focuses mainly
on video understanding queries (e.g., Q&A) with limited editing or generation capabilities. To date,
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no existing platform fully supports a unified, end-to-end agentic workflow that spans all key facets
of video content creation and analysis.

To bridge this gap, we propose UniVA (Universal Video Agents), a unified multi-agent video AI
platform that enables complex multi-step video creation and manipulation tasks. Technically, UniVA
can be depicted by two key characteristics:

• Highly automated, interactive, proactive user experience: UniVA is built on a Plan/Act
dual agent architecture: a planner agent first interprets the user’s request and decomposes it
into a sequence of actionable steps, and an executor agent (or a team of specialized agents)
then carries out each step by invoking the appropriate video tool modules. This separation
of planning and acting (in line with recent agent design patterns) allows the system to look
ahead and reason about long-horizon goals, while flexibly adapting the plan if intermediate
results require changes. On the one hand, with strong planning capabilities, UniVA can au-
tonomously accomplish an entire video production pipeline from a single user query. On the
other hand, agents communicate and share information through a multi-level memory mech-
anism: a global memory stores persistent knowledge and facts (e.g. general video facts or
precomputed embeddings), a task-specific memory retains context and intermediate results
for the current workflow, and a user memory keeps track of user preferences or historical in-
teractions. Such memory design ensures that context is maintained throughout the workflow,
enabling continuity and avoiding forgetting important details mid-task. In this way, UniVA
supports iterative, multi-round interactions, enabling deeply immersive and dynamic creative
experiences.

• Comprehensive, industrial-level video production capabilities: Built upon the Model Con-
text Protocol (MCP) (Hou et al., 2025), UniVA can seamlessly integrate state-of-the-art video
functional modules—either open-source or API-based—in a plug-and-play fashion, where
each tool module is implemented as a modular server and the two agents act as the client.
The tool hub spans three major categories: video tools (e.g., generation, understanding, edit-
ing), non-video tools (e.g., audio or image operations), and non-AI tools (e.g., video cutting).
This broad coverage encompasses nearly all functionalities required in the video production
process. For example, UniVA supports video generation/transformation from arbitrary condi-
tions, e.g., text, image or video. By combining with cutting-edge external video generation
models, UniVA enables cinematic-quality production of long, complex, and narrative-rich
videos. Under the MCP framework, the system can also be effortlessly extended to incorpo-
rate new tools and capabilities.

To evaluate such systems, we release UniVA-Bench, a suite of multi-step video tasks spanning un-
derstanding, segmentation, editing, and generation. Tasks are specified as goal cards with gold
artifacts (e.g., evidence spans, masks, EDLs) and scored with both task metrics and agentic metrics
(plan quality, tool-routing efficiency, memory use, trace completeness). UniVA-Bench is designed
to test compositionality, tool swaps, and long-form reasoning—not just per-task accuracy. Code,
benchmark, and evaluators are all open-sourced.

In summary, our contributions are threefold: (1) We present UniVA, a novel agent-based frame-
work that unifies video tasks in a single open platform. UniVA’s plan/act dual-agent architecture
with multi-level memory enables it to perform complex, iterative video tasks that were infeasible
for previous methods. (2) We develop cross-modal and cross-task integration techniques within
UniVA, demonstrating how information from one video modality can enhance another – a form of
tool synergy that improves outcome quality and coherence. (3) We release UniVA-Bench, the first
benchmark to assess an agent’s competency across a broad range of video tasks and their compo-
sitions. Ultimately, UniVA moves the field closer to interactive, next-generation video intelligence
that is both highly capable and reproducible.

2 RELATED WORK

Evolution of Video Intelligence. The field of video intelligence has matured from a collection of
specialized tasks—spanning understanding (Tran et al., 2015; Maaz et al., 2024), generation (Ho
et al., 2022; Singer et al., 2022), editing (Wu et al., 2023; Liu et al., 2024), and segmentation (Cheng
et al., 2023)—into a pursuit for more integrated solutions. In response to the fragmentation of these
task-specific systems, a new wave of unified video foundation models has emerged. Models like
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Figure 1: The overall architecture of the UniVA system is built on a Plan–Act paradigm. The Plan
Agent decomposes user input (text, image, or video) into subtasks by leveraging global memory
(historical traces) and user memory (stored materials). The Act Agent then retrieves task-specific
memory, executes subtasks via the MCP protocol, and coordinates with external MCP servers, in-
cluding video, non-video, and non-AI tools. Finally, the system generates versatile, multimodal
outputs that span text, image, video, and audio.

Show-o2 and Omni-video aim to jointly train for understanding and generation, while advanced
Video-LLMs now incorporate segmentation modules like SAM to enable object-level grounding
and reasoning (Xie et al., 2025; Tan et al., 2025; Xiao et al., 2024). Although these unified models
represent a significant step forward, they typically rely on static, pre-defined pipelines. This inherent
rigidity limits their ability to handle novel task compositions and makes them difficult to extend
or maintain. This highlights a critical gap: the need for a framework that moves beyond static
integration to enable dynamic, on-the-fly orchestration of heterogeneous modules.

Agents for Video Intelligence. Agent-based paradigms have emerged as a promising solution for
flexible video intelligence, leveraging planning, interaction, and memory mechanisms (Chen et al.,
2024; Yin et al., 2023; Wu et al., 2024a). VIDEOAGENT (Fan et al., 2024a) enhances generative
quality with memory augmentation, while other works explore agent planning for long-context rea-
soning (Wang et al., 2024b) and self-improving generation (Soni et al., 2024). Applications extend
to video reasoning (Liu et al., 2025; Shi et al., 2025), editing (Wang et al., 2024a), stylization (Yue
et al., 2025), and story generation (Hu et al., 2024). Multi-agent collaborations such as VideoMul-
tiAgents (Kugo et al., 2025) and PREMIND (Wei et al., 2025) further enhance performance, though
communication and coordination remain open challenges. Protocols like MCP (Hou et al., 2025)
and modular plug-and-play designs offer promising directions. Departing from isolated paradigms,
our UniVA framework leverages multi-agent interaction, memory augmentation, and context en-
gineering (Mei et al., 2025) to unify understanding, reasoning, editing, and generation, advancing
toward truly universal video agents.

3 UNIVA

The overall architecture of UniVA, illustrated in Figure 1, is a layered system designed for both
extensibility and power. Instead of a monolithic design, UniVA breaks down complex video tasks
into a structured workflow. User requests, expressed as natural language or multimodal input, are
first processed by the system core. This core consists of two complementary layers: a Planner
which performs high-level reasoning and decomposes the request into abstract sub-goals, and an
Actor which grounds these sub-goals into concrete actions by invoking external modules. Their
interaction is mediated by a unified MCP scheduling layer, which standardizes communication
between the Actor and an extensible suite of tools. These tools encompass both domain-specific
modules (e.g., understanding, generation, editing, segmentation) and horizontal capabilities (e.g.,
memory and task control). This layered design achieves a clear separation of concerns: the Planner
orchestrates strategy, the Actor manages execution, and the MCP abstracts the heterogeneity of the
tool ecosystem. This provides the foundational breadth and modularity essential for a comprehen-
sive video intelligence platform. More importantly, the true strength of UniVA lies in its intelligent
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control loop, enabled by the synergistic interplay between the dual agents and multilevel memory,
which unlocks the system’s depth and overall effectiveness.

3.1 PLAN–ACT DUAL AGENT ARCHITECTURE

As the core of UniVA, the Plan–Act dual-agent architecture separates high-level reasoning from
low-level execution while maintaining a tight feedback loop between the two:

• The Planner is responsible for interpreting the user request and breaking it down into a series
of sub-goals. For example, given “make a cartoon video of my dog”, the Planner may de-
compose it into: (1) retrieve images of the dog, (2) generate a cartoon-style video, (3) edit the
background, and (4) compose audio. The Planner maintains high-level reasoning, determines
the task order, and dynamically adapts the plan when intermediate results suggest revisions.

• The Actor is responsible for execution. It receives each sub-goal from the Planner, selects the
appropriate tool through the MCP interface, fills in required arguments (e.g., video clip, mask,
prompt), and executes the call. Once a tool finishes, the Actor collects the output and sends
it back to the Planner. This separation keeps the Planner lightweight and strategic, while the
Actor focuses on using the tool reliably and efficiently.

Together, the Planner and Actor form an iterative control loop: the Planner decides what to do next,
the Actor executes the decision, and memory modules record intermediate outputs. This design
enables UniVA to handle complex, multi-step video tasks in a structured yet flexible manner.

3.2 MEMORY MECHANISM

A key challenge in agentic video systems is to maintain context across long and multi-step work-
flows. As presented in Figure 2, UniVA addresses this with a three-level memory mechanism that
augments the Planner–Actor loop:

1) Global Memory. Stores persistent knowledge and reusable resources, such as precomputed
embeddings, generic video facts, or tool usage statistics. This memory provides background
context and supports cross-task generalization.

2) Task Memory. Maintains intermediate artifacts, tool outputs, and execution traces within the
current workflow. It ensures continuity across multiple steps, allowing later sub-goals to reuse
results (e.g., segmentation masks or captions) without redundant computation. Task memory
also enables traceability, making the entire workflow transparent and reproducible.

3) User Memory. Captures user-specific preferences and historical interactions, such as favored
styles, recurring edit patterns, or personalized constraints. This enables adaptive behaviors,
e.g., automatically applying a user’s preferred editing style in future tasks.

Together, these memory levels provide both persistence and adaptability, ensuring that UniVA can
efficiently manage context, reuse knowledge, and tailor its outputs to diverse user needs.

3.3 MCP SERVERS

The MCP server module acts as a unified gateway between the Actor and a collection of distinct tool
servers. The server maintains a registry of available functions, validates and executes calls through a
standardized API, and records outputs for traceability. This design means that adding or replacing a
capability only requires registering it on the server, while the Planner and Actor remain unchanged,
making the system modular and extensible.

UniVA is equipped with an extensive and diverse toolset integrated via this MCP layer. To balance
flexibility with reliability, we classify each function as either an [Atom] or a [Workflow]:

• [Atom]: A fundamental, single-purpose operation, such as generating an image from a text
prompt.

• [Workflow]: A higher-level, pre-composed function that orchestrates multiple atomic tools
to complete a common multi-step task, such as generating an entire story video from a single
command.

This dual approach provides the Planner with both the versatility to creatively combine atomic tools
for novel problems and the stability of using robust workflows for high-stakes production. A com-
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Figure 2: Memory-augmented framework for video generation. Global and user memories provide
context to the Plan Agent, while task memory coordinates tool calling, storyboard creation, and the
overall video generation process.

prehensive taxonomy of our entire toolset, spanning video, audio, and image modalities, is provided
in Appendix C.3 for a full overview of UniVA’s capabilities.

The unified architecture of UniVA is designed to accommodate a wide spectrum of creative work-
flows, from fine-grained, iterative refinement to fully autonomous, end-to-end execution. For users
who prefer a hands-on approach, the framework’s breadth of modular tools can be orchestrated in an
interactive, multi-round dialogue, allowing for precise, step-by-step control. Conversely, for users
who desire a more streamlined process, UniVA’s depth allows it to autonomously handle a single,
high-level instruction. By leveraging the synergistic interplay of its Planner, Actor, and memory sys-
tems, the agent can independently decompose a simple prompt into a complex, multi-shot narrative
workflow. We provide visual walkthroughs in Appendix C.2 to further illustrate these capabilities.

4 UNIVA-BENCH

Real-world video creation is inherently an iterative, multi-stage process, yet existing benchmarks
largely evaluate video intelligence through isolated, single-model tasks. This overlooks critical
agentic capabilities, such as planning, memory utilization, and tool orchestration. To bridge this
gap, we introduce UniVA-Bench, an agent-oriented benchmark that shifts the focus to end-to-end,
tool-augmented workflows, aligning evaluation with the complex demands of practical video agents.

4.1 TASKS

We define the task taxonomy in UniVA-Bench as follows, detailed curation processes are provided
in Appendix D.2:

• Understanding (Long-Video QA). This task is designed to target both aesthetics- and
semantics-oriented questions for long videos, encompassing shot transitions, visual style, and
narrative comprehension in addition to standard entity and action semantics. Unlike prior set-
tings, where each QA pair is tied to a single short clip, our task demands answering multiple
interdependent questions grounded in a single long-form video.

• Generation. Agents are evaluated on diverse real-world video generation tasks, categorized
into three subtypes: 1) LongText2Video, handling long or noisy prompts that necessitate
storyboard-first planning; 2) Image/Entities2Video, using 1–3 reference images to enforce
identity preservation and cross-scene coherence; 3) Video2Video, conditioning on a source
video while ensuring referential stability for persons and objects.

5
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• Editing (Long Video). This task is defined to involve multi-step edits such as cross-shot
replacement, attribute modification, and style transfer, while maintaining narrative integrity
and referential consistency. Effective completion requires reasoning in combination with tool
invocation (e.g., ref-seg → inpaint/compose → merge).

• Segmentation (Long Video). Designed for long clips with multiple entities and frequent oc-
clusions, this task evaluates temporal consistency and robustness in detecting and segmenting
shot boundaries.

• Agentic probing sets. The sets are designed to probe agentic capabilities explicitly, includ-
ing: (1) a 50-instance storyboard-to-user-intent planning set to compare Single-Agent versus
Plan-Act, and (2) a pipeline-based task set with expert references, used to evaluate Weighted
Plan Edit Distance (wPED), Dependency Coverage (DepCov), and Re-planning Quality (Re-
planQ) under injected failures. In addition, memory-oriented analyses consider three dimen-
sions: trace memory (e.g., historical trajectories), user memory (personal preferences), and
task memory (e.g., storyboards).

4.2 EVALUATION PROTOCOL

To evaluate agent performance on UniVA-Bench, we employ a comprehensive suite of metrics tar-
geting three key areas: (1) Task-specific Quality, using established metrics like CLIP Score for
command following and DINO Score for subject consistency; (2) Overall User Preference, captured
via pairwise judgments from a powerful MLLM-as-a-Judge; and (3) Agentic Planning Capabili-
ties, assessed using our novel, specialized metrics (wPED, DepCov, and ReplanQ) that measure
plan quality, logical correctness, and recovery robustness. The detailed definitions and calculation
methods for all metrics are provided in Appendix D.3.

5 EXPERIMENTS

To comprehensively evaluate our system’s capabilities in realistic, end-to-end workflows, we con-
duct all experiments on UniVA-Bench, an agent-oriented benchmark we introduce in this work.
Our experimental design is guided by two central hypotheses: 1) that a unified agentic architecture,
where functional modules like understanding and generation are deeply integrated, provides a sig-
nificant performance advantage over isolated, end-to-end models; and 2) that the combination of a
dual-agent Plan-Act framework and a multi-component memory system is essential for achieving
the robust planning and persistent context required for complex video tasks.

5.1 PERFORMANCE OF FUNCTIONAL MODULES

Generation. In the generation scenarios, we benchmark UniVA against three representative end-
to-end models: LTX-Video (HaCohen et al., 2024), Wan (Wan et al., 2025), and Seedance (Gao
et al., 2025). We evaluate the results using CLIP Score (prompt following), DINO Score (subject
consistency), and preference ratings from an MLLM-as-a-Judge, following the UniVA-Bench spec-
ification. The results are shown in Table 1. For LongText2Video, UniVA achieves the highest CLIP
score of 0.2814 and the MLLM Judge score 3.333, which is directly attributable to its agentic frame-
work. Unlike end-to-end models, UniVA’s Planner first parses the noisy, long-term text to distill the
core user intent into an optimal prompt, overcoming a common shortage of traditional end-to-end
models. On Entities2Video, while specialized models like Seedance show strong performance in
subject consistency (DINO Score), UniVA remains competitive. This highlights a current trade-off
where our agent prioritizes overall instruction complexity and narrative coherence, a direction for
future optimization. Regarding Video2Video, although UniVA does not lead in automated metrics
such as the CLIP Score or DINO Score, it achieves a commanding MLLM Judge score of 4.068.
This apparent discrepancy shows that UniVA’s planner excels at interpreting and executing complex
instructions (e.g., ‘modify the storyline while preserving the style’). This often requires a correct
understanding of the original video, and then providing a concise prompt to generate a new video.

Understanding. For the understanding task, we compare UniVA against several leading Large
Multimodal Models, including GPT-4o (OpenAI et al., 2024), Gemini 2.5 Pro (Google, 2023),
InternVL3-38B (Zhu et al., 2025), and Qwen2.5-VL-72B (Bai et al., 2025). Performance is mea-
sured by QA accuracy. As shown in Table 2a, UniVA achieves the highest accuracy of 0.76, outper-
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Table 1: Comparison across LongText2Video, Entities2Video and Video2Video.

Method LongText2Video Entities2Video Video2Video
CLIP Score DINO Score MLLM Judge CLIP Score DINO Score MLLM Judge CLIP Score DINO Score MLLM Judge

LTX-Video 0.2161 0.9392 1.125 0.2210 0.8452 1.281 0.2263 0.9943 2.123
Wan 0.2028 0.6779 3.183 0.3106 0.7043 1.650 0.2632 0.9188 2.034
Seedance 0.2157 0.8836 2.650 0.3039 0.8800 2.700 0.2684 0.9518 2.621
UniVA 0.2814 0.9026 3.333 0.2868 0.8796 1.789 0.2620 0.8939 4.068

Table 2: Comparison of three long video tasks: Understanding, Editing, and Segmentation.

(a) LongVideo Understanding

Method Acc

GPT-4o 0.52
Gemini 2.5 Pro 0.65
InternVL3-38B 0.75
Qwen2.5-VL-72B 0.74
UniVA 0.76

(b) Long Video Editing

Method Editing

CLIP DINO MLLM

Aleph 0.2258 0.6808 3.484
UniVA 0.2280 0.7488 3.635

(c) Long Video Segmentation

Method Segmentation

J F J&F

SA2VA 0.2076 0.0972 0.1524
UniVA 0.3254 0.1680 0.2467

forming the isolated models. These results highlight the benefit of UniVA’s agentic design, where
explicit task decomposition and iterative reasoning allow the system to maintain context and handle
complex, multi-question queries more effectively than single-pass inference models.

Editing. For long video editing, we benchmark UniVA against Runway Aleph (run, 2025), a
strong baseline for video editing tasks. Evaluation metrics include CLIP Score, DINO Score, and
MLLM preference. As demonstrated in Table 2b, it can be seen that in a traditional set-up, an edit-
ing model would be disconnected from a deep and continuous understanding of the video. UniVA
bridges this gap by first leveraging the integrated Understanding module through the Probing tool
to establish a persistent semantic context, enabling the agent to accurately ground editing objects
across long-term, multi-shot video and to execute edits in a coherent and context-aware manner.

Segmentation. In the challenging long video segmentation task, we use SA2VA (Yuan et al.,
2025a) as our primary baseline. We report the J-mean, F-mean, and J&F-mean scores. In Table
2c, UniVA achieves the best scores on all metrics. This is because UniVA can query the co-located
Understanding module to resolve ambiguities that are impossible to solve at the pixel level. For
instance, when an object is occluded, the agent can ask the Probing tool: “Based on the narrative
context, is the object reappearing at timestamp X the same ‘blue car’ from timestamp Y?” This
ability to dynamically leverage a powerful understanding module to inform a perception task like
segmentation is a unique benefit of our integrated design.

These 4 experiments demonstrate that a unified agentic architecture is critical for advancing
video intelligence. The superior performance of UniVA is not merely due to the quality of its
individual modules but stems from the tight coupling and dynamic interplay between them.

5.2 AGENTIC SYSTEM PROBING

5.2.1 PLANNING CAPABILITY

Analysis: To select the optimal Planner for our framework, we evaluated three leading LLMs
(Figure 3). Claude-Sonnet-4 demonstrated superior performance in DepCov and ReplanQ. Since
correctly identifying task dependencies and robustly recovering from failures are paramount for a
reliable agent, we selected Claude-Sonnet-4 as the Planner for all subsequent experiments.

In Figure 4, Success Rate is the percentage of test cases where the agent produced a structurally
valid plan (i.e., wPED > 0)—measuring the agent’s ability to avoid catastrophic failures, such as
generating an empty or malformed output. It more than doubles the Success Rate (45.0% vs. 20.0%),
indicating a much lower rate of catastrophic failures. Furthermore, the quality of its successful plans
is also over twice as high, reflected in a wPED score of 0.117 versus 0.050. This confirms that the
explicit planning stage can not only output valid plans but also high-quality plans.
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Figure 3: Performance of Planner LLMs.
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5.2.2 MEMORY CAPABILITY

We then analyze the distinct contributions of our three memory modules. To isolate their effects,
we designed specific experimental probes: (i) Global Memory was tested by providing the agent
with a set of trajectories from an expert planning dataset; (ii) User Memory was evaluated in the
Entities2Video task, where the agent could retrieve user-provided reference images via a RAG
mechanism; and (iii) Task Memory was assessed in the LongText2Video task by comparing the
performance of generating with and without a storyboard.
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Figure 5: Trace Memory.
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Figure 6: User Memory.
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Figure 7: Task Memory.

Analysis: In Figure 5, across most cases, the agent with global memory achieves a higher wPED
score than without global memory. This indicates that by drawing on past trajectories, the agent
becomes better at aligning its generated plans with expert-preferred structures. And most strikingly,
global memory prevents catastrophic planning failures. In numerous instances (e.g., turns 3-5, 8-
10, 14, and 18-20), the agent without global memory completely fails to produce a viable plan,
resulting in a wPED score of zero. However, an agent with global memory not only succeeds but
often produces high-quality plans. Figure 6 shows that with the user memory, the agent can better
understand the user’s indications, such as when the user refers to a cat, the user memory can enable
the agent to locate the cat image from the user’s materials, making the generated content more
aligned with user intent. Utilizing storyboards as task memory (Figure 7) provided a substantial
boost across all quality metrics. This demonstrates that maintaining an intermediate representation
of the creative goal is essential for ensuring semantic coherence and cross-shot consistency in the
final video, directly validating the storyboard’s role in our agent’s workflow.

In summary, our dual Plan-Act Agent framework improves the ability to process complex tasks.
Additionally, three memory mechanisms enable the agent to build a persistent context, making it
more robust, facilitating better user intent understanding, and ensuring more consistent genera-
tion of videos.

5.3 HUMAN EVALUATION

To complement our automated evaluations and validate the MLLM-as-a-Judge, we conducted a for-
mal human evaluation study. The primary goal is to determine if the MLLM-as-a-Judge corresponds
with the subjective preferences of human annotators. We focus on the video generation tasks (Long-
Text2Video, Image2Video, and Video2Video). We collected generated video results from both our
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UniVA system and the baseline models for each task. Annotators were asked to judge each video
based on a set of criteria identical to those used for the MLLM-as-a-Judge.
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Figure 8: Results from the human evaluation study on video generation tasks.

UniVA (darkest blue bar) emerges as the clear leader, achieving the highest human preference scores
in four out of the five evaluated dimensions. This strong human preference aligns with the patterns
observed in our automated metrics, confirming that our MLLM judge is a reliable proxy for genuine
human perception.

5.4 QUALITATIVE CASE STUDIES

To provide a more intuitive understanding of these quantitative results, we present a series of qual-
itative case studies. These examples visualize how UniVA’s unique capabilities in planning and
synergy lead to superior outcomes in complex narrative scenarios.
Please generate a 30-second short documentary video based on the following story beats. 1. Close-up of clay meeting 
a spinning wheel; fingers press and a rib tool carves spirals as slip flicks outward under warm studio light. 2. 
Over-the-shoulder time-lapse: the vessel rises from cylinder to wide bowl; wet sheen glistens while the wheel slows. 
3. Kiln-loading montage: …… line patterns emerge. 5. Morning reveal: final bowl on a wooden table beside steaming 
tea; the potter signs the foot and exhales in quiet satisfaction.

Figure 9: UniVA accurately generates sequential process of pottery making, demonstrating strong
temporal consistency and object persistence as the bowl evolves from clay to finished product.

6 CONCLUSION

In this work, we introduced UniVA, a unified agentic framework designed to tackle the next fron-
tier of video intelligence. We argued that progress in the video domain requires a paradigm shift
from developing isolated, single-task models to creating integrated systems capable of complex,
collaborative workflows. To this end, our primary contributions were the development of the pow-
erful and extensible UniVA platform, the demonstration of its emergent synergistic capabilities, and
the release of UniVA-Bench to rigorously measure such advancements. Our experiments validate
UniVA’s breadth, demonstrating competitive performance across a wide array of video tasks. More
profoundly, we reveal its depth: through “Agentic Synergy” enabled by the dynamic management of
information flow between tools, UniVA solves complex consistency problems intractable for siloed
models. This confirms that UniVA is not merely a collection of tools, but an engine for generating
emergent intelligence. We hope that UniVA and UniVA-Bench will inspire future video intelligence
research into this new generation of integrated, synergistic AI systems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We have developed UniVA and UniVA-Bench with a strong commitment to the ICLR Code of
Ethics. We have carefully considered the potential ethical implications of our work and detail our
considerations regarding key areas below.

Potential for Misuse of Generative Technology We acknowledge that powerful video genera-
tion and editing technologies, such as UniVA, have the potential for dual use. While our primary
goal is to create a tool that empowers creative professionals and democratizes video production, this
technology could be misused to create convincing synthetic media for malicious purposes, includ-
ing misinformation and harassment. The current version of UniVA does not incorporate explicit
safeguards against the generation of harmful, biased, or copyrighted content. We believe that the
development of robust detection methods, watermarking techniques, and responsible deployment
practices is critical research directions for the entire community, and we are committed to contribut-
ing to these efforts in future work.

Data Licensing, Bias, and Curation Our research utilizes several publicly available datasets (e.g.,
Video-MME, SF20k, DAVIS2017), and we have adhered to their respective licenses and terms
of use. We also acknowledge that the large pre-trained models used within UniVA (e.g., Claude,
Qwen2.5-VL) may have inherited societal biases from their training data, which could be reflected
in the generated outputs. Furthermore, for the curation of UniVA-Bench, we employed LLMs to
generate certain prompts and question-answer pairs. This process may introduce biases inherent in
the LLMs themselves. To mitigate this, all machine-generated data underwent a rigorous manual
review and refinement process by the authors to ensure quality, diversity, and alignment with the
benchmark’s goals. We plan to release UniVA-Bench under a license that encourages responsible
research use.

Human Subjects in User Study Our human evaluation study involved human annotators. All
participation was voluntary, and the purpose of the study was clearly explained to all participants
beforehand. To protect privacy, all data collected was fully anonymized, and no personally identi-
fiable information was stored. The task involved rating generated videos for quality and relevance,
which we assess to be a low-risk activity.

Research Integrity We are committed to the integrity of our research. The experimental results
are reported transparently, and we have made an effort to fairly compare our system against relevant
baselines. In the appendix, we provide detailed configurations for our system and all baselines, as
well as precise definitions for our evaluation metrics, to ensure the reproducibility of our findings. A
statement on our use of LLMs in the research and writing process is also included in the appendix.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide a compre-
hensive set of resources and detailed documentation, distributed across our main paper, the appendix.

Codebase. We will release the complete codebase for the UniVA framework, including the im-
plementation of the dual-agent control system, the multi-level memory, and the MCP-based tool
integration layer.

Benchmark and Datasets. Our novel benchmark, UniVA-Bench, including all curated prompts,
evaluation data, and reference plans, will be publicly released. A detailed description of the data
curation process for each sub-task is provided in Appendix D.

Experimental and Evaluation Details. To facilitate the replication of our experimental results,
we have provided extensive details in the appendix. Appendix E contains the precise configurations
for our UniVA system and all baseline models, including key hyperparameters. Appendix D offers
the exact definitions and mathematical formulas for all our evaluation metrics, along with the prompt
template used for the MLLM-as-a-Judge.
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A STATEMENT ON LLM USAGE

As detailed in Section D, we utilized Large Language Models (LLMs) to programmatically as-
sist in the data curation process for our UniVA-Bench. Specifically, LLMs were used to generate
multiple-choice question-answer pairs for the Long-Video QA task, and to create noisy prompts for
the LongText2Video task. It is important to note that all machine-generated data underwent a rigor-
ous manual review, filtering, and refinement process by the authors to ensure its quality, relevance,
and alignment with the benchmark’s objectives. The authors take full responsibility for all content
presented in this work.

B HIGHLIGHT OF UNIVA

To provide a concise overview of UniVA’s overall capabilities and unique characteristics, we sum-
marize its key highlights below. These can be categorized into two primary value propositions: a
revolutionary user experience and comprehensive, industrial-grade production power.

1) Highly automated, interactive, proactive user experience. UniVA is architected to trans-
form the traditionally complex and labor-intensive video creation process into a fluid, intuitive, and
collaborative dialogue. Through its decoupled, modular design and intelligent dual-agent control
system, UniVA delivers a user experience that is proactive, iterative, and highly automated.

• Proactive Planning. Instead of passively waiting for precise, step-by-step commands,
UniVA’s Planner proactively analyzes high-level user goals to formulate robust, multi-step
execution plans.

• Seamless Iteration. The combination of the Actor’s precise execution and the Task Mem-
ory’s stateful tracking enables a truly iterative workflow. Users can incrementally build upon
previous results, make fine-grained adjustments.

• Extensible Platform. MCP-based architecture ensures that UniVA is not a static system. It
is designed to be an extensible platform where new, state-of-the-art models and capabilities
(e.g., emerging audio or new stylization models) can be seamlessly integrated as new tools.

2) Comprehensive, industrial-level video production capabilities. Beyond its user-centric de-
sign, UniVA is a powerful production engine built for versatility and quality. By integrating a
comprehensive suite of state-of-the-art models within a unified framework, UniVA offers an un-
precedented breadth of capabilities and delivers results that meet the standards of professional and
industrial applications.

• Any-conditioned Video Gen. UniVA breaks the rigid boundaries of traditional generation
models. It can synthesize video from virtually any combination of inputs: long and complex
text, reference images, existing video clips, character likenesses, and more. This flexibility
allows creators to work with the materials they have, rather than being constrained by the
tool’s limitations.

• Coherent Long-Form Video. UniVA excels at producing long-form videos with high tempo-
ral and semantic coherence. It can maintain character identity, object persistence, and stylistic
consistency across multiple scenes.

Figure 10 provides a visual summary of UNIVA’s highlights.

C DETAILED METHODOLOGY

Since UniVA integrates multiple functionalities within a large-scale system, it is essential to clarify
its design philosophy. In this section, we present the guiding principles and functional workflow that
underpin the framework, providing a comprehensive view of our design.

C.1 PRINCIPLES

Here we provide a set of design principles that guide the construction of our UniVA framework.
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Multi-Round Editing:
Let she wear this dress.
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User-Friendly Workspace

Highly automated, interactive, proactive user experience

Interactive, Immersive, Creative Video Generation

Multi-round iterative process

retrieve update

Memory & Context Management

User Input

Tool Calling
& Response

Intention Understanding & Automation Scalable: MCP-Based Framework

User Input: I want to stay in France <video>.

MCP Protocol

Tool Calling

Tool Register

MCP Servers

AI Tools

Non-AI Tools

<thinking…> I guess you want to replace
the background, so I segment the main
object first, and use the editing tool to
replace the background to Paris…

Comprehensive, industrial-level video production capabilities

Any-Conditioned Video Generation

Complex Video Generation Comprehension & Perception

text2image

text2video

stylization

editing

audio+video

Quality & Consistency

2K video SR
Object consistency
Cinematic quality

captioning

image2video

video object
segmentation

Further generation tasks

• User instruction with complex story
• Multi-scene/characters/camera pose changes
• Ultra long video generation/editing

User Input with Complex Task & Multi-Modal Input
Create a prequel to the original video that introduces the backstory ……

First I will try to understand the video content. The video 
describes a boy narrates the process of his directorial creation…

Now I fully understanded the video content, I will 
extract the relevant content to generate ……

Current video content don’t satisfy the 
requirements, so I will extend this video  ……

3. Intention Understanding & Self-Reflection1. Video Understanding before Generation 2. Seamless Generation

Generated video Generated extension

User Input:
Make the woman wear this dress,
then turn a round to show

✓ Analyze to understand the woman's 
appearance and characteristics

✓ Analyze to understand the dress 
design and style

✓ Generate an image of the woman 
wearing the specified dress

✓ Generate a video of the woman in the 
dress turning around to show the 
outfit

Generated video Generated edited video

Plan & Tool Calling…

Planner

Figure 10: A visual overview of highlights of the proposed UNIVA.

1. Unified & Modular Architecture. A comprehensive and extensible system requires a modular
architecture. In UniVA, all capabilities—from SOTA generation models to simple non-AI tools—are
integrated as decoupled functional modules. These modules are invoked via a unified Model Con-
text Protocol (MCP), allowing them to be updated or replaced in a plug-and-play fashion. This
principle is the foundation for the system’s industrial-level production capabilities and ensures it
can consistently deliver cinematic-quality output by leveraging the best available tools.

2. Separation of Plan & Act for Complex Workflows. At the core of the agent’s operation
is a strict Plan-Act separation, which realizes the dual agent architecture described previously. A
Planner agent interprets high-level user intent and decomposes it into a logical sequence of steps.
An Executor agent then carries out each step by invoking the appropriate tools. This separation is
crucial for managing long-horizon tasks and allows the system to robustly handle complex, multi-
step video production pipelines.

3. Proactive, Goal-Oriented Autonomy. Crucially, the Planner is more than a passive task de-
composer; it is designed for a high degree of automation and proactive behavior. The agent ac-
tively evaluates intermediate results against the inferred user goal. If an output does not align with
the objective—as shown in the teaser, where the agent decides a video is insufficient—it initiates
self-reflection to flexibly adapt its plan. This ability to autonomously course-correct is the key to
accomplishing an entire production pipeline from a single user query.

4. Hierarchical Memory for Immersive Interaction. The framework’s multi-level memory
mechanism is what enables iterative, multi-round interactions and deeply immersive creative expe-
riences. This hierarchy consists of global memory for persistent knowledge, task-specific memory
to maintain context for the current workflow, and user memory to track preferences. This design
ensures contextual continuity, allowing users to refine and build upon their creations over extended
interactions.
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First, I need to figure out who is the main character in the video 1…

Well, now I got the description of the main character, let me get segment 2…

Now let me try to change the background to a snowy street in video 3……

OK, I will use video extension tool to extend the video 3 to video 4 …

ü Video Understanding

ü Video Referring Segmentation

User Input: Change the background to a snowy street.

ü Video Editing

User Input: Extend this video, let the character turn around and smiling …

ü Video Extension

Multi-round Task:One Prompt Task:

ü Video Understanding

ü Storyboard Generate

ü Initiate Characters

ü Keyframes Generate

ü Clips Generate

ü Merge Video

User Input

Maintain the plot, and apply a Chinese ink-painting style to the visuals.

1

OK, well. This video 1 is talking about a little duck want to …

I will generating a similar story 2 based on the original video content …

I’m generating the portraits 3 of the main characters …

Based on these portraits 3 and storyboard 2, let me generate keyframes 4…

I got the keyframes 4. Now let me generate each video clip 5 based on…

Memory

Story Board:
2

3

4

5

Memory

2 3

4

User Input

Segment the main character in the video.

1

Figure 11: An iterative tool calling for video generation. Left: one-prompt task applies a global ink-
painting style. Right: multi-round task incrementally edits via segmentation, background change,
and extension, demonstrating representative functions.

5. Composition of Atomic Operations into Robust Workflows. To effectively handle the com-
posite and iterative workflows mentioned earlier, the framework strikes a balance between flexibility
and reliability. All complex functionalities are built upon a set of fine-grained atomic operations.
The Planner can creatively combine these atomic operations to solve novel problems. For common,
high-stakes tasks, these operations are organized into pre-defined workflow patterns to ensure ro-
bust and predictable execution. This dual approach provides the system with both the versatility for
creative exploration and the stability required for industrial-grade production.

C.2 END-TO-END WORKFLOW DEMONSTRATION

Figure 11 showcases how UniVA’s components work in synergy, revealing both its depth in handling
complex, autonomous tasks and its breadth in supporting interactive, multi-tool creation.

The one-prompt task (left panel) exemplifies the system’s depth. Faced with a complex command,
the Plan-Act agent autonomously decomposes the goal and orchestrates a sequence of tools via the
MCP Servers. By managing the information flow through the Memory Mechanism, it effectively
connects different capabilities, such as using an understanding tool to empower a generation tool.
This enables the agent to collaboratively use multiple tools to achieve a sophisticated goal in a single
pass.

Conversely, the multi-round task (right panel) highlights the system’s breadth. It provides a power-
ful platform with a wide array of tools that users can flexibly combine through iterative interaction.
Each command triggers a new Plan-Act cycle, where the agent leverages context from the Mem-
ory Mechanism (e.g., a segmentation mask) to execute the next step. This demonstrates how our
architecture supports a flexible, stateful, and collaborative creative process.
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Video Tools

Video Editing

swap object tool [Atom] Swap objects in video with reference image objects.

repainting [Atom] Partially repaint or replace specific objects in video.

depth modify [Atom] Edit foreground/background using depth information.

recolor [Atom] Recolor video or modify colors of specific regions.

pose reference [Atom] Transfer poses from video to new characters.

style transfer [Atom] Convert video to a specified artistic style.

Video Generation

text2video gen [Atom] Generate short videos (5s) from text descriptions.

image2video gen [Atom] Generate videos using text and image references.

video extension [Atom] Extend videos by generating from the last frame.

frame2frame video gen [Atom] Generate videos transitioning between frames.

storyvideo gen
[Workflow] End-to-end story video generation with
storyboard, characters, keyframes, and audio.

entity2video [Workflow] Generate coherent video using character images.

Video Tracking

referring segmentation [Atom] Instance segmentation of objects by text prompts.

video all segmentation [Atom] Segment all detectable objects and output masks.

Video Understanding

vision2text gen [Atom] Convert visual content to textual descriptions.

video timestamp analysis [Atom] Analyze specific frames with optional segmentation.

main object analysis [Atom] Locate and describe main objects in video scenes.

longvideo understanding
[Workflow] Long-horizon video analysis with detailed
summaries.

Non-Video Tools

Audio Generation

video foley [Atom] Create sound effects based on video content.

speech gen [Atom] Generate speech from a text prompt.

speech to text [Atom] Transcribe speech to text with timestamps (ASR).

voice clone
[Workflow] Clone a target voice from a few samples for
later TTS.

music gen
[Atom] Generate background music from text (mood, style,
scene).

Image Generation

text2image generate
[Atom] Generate new images from text prompts;
supports multiple models (mj-chat, flux-kontext).

image2image generate
[Atom] Generate new images from a prompt and an input
image; maintain character or style consistency.

image editing [Atom] Edit existing images (inpaint, retouch, composite).

Non-AI Tools Video Cut

merge video [Atom] Merge multiple video clips into one.

add transition [Atom] Add transitions between clips (fade, wipe, slide).

add subtitle [Atom] Add subtitles

materials search
[Atom] Search royalty-free images/videos by keyword
(Pixabay, Unsplash).

M
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Figure 12: A three-level taxonomy of MCP tools: modules (level-1), tools (level-2), and leaf boxes
summarizing name, type, and functionality.

C.3 FUNCTION WALKTHROUGH

UniVA is equipped with an extensive, modular toolset integrated via the Model Context Protocol
(MCP). This “plug-and-play” architecture enables the agent framework to invoke a diverse range of
specialized functions. As shown in Figure 12, these tools are organized into three main categories:
Video Tools, Non-Video Tools, and Non-AI Tools.

Each function is classified as either an [Atom] or a [Workflow]:
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• [Atom]: A fundamental, single-purpose operation, such as generating an image from text.

• [Workflow]: A higher-level function that composes multiple atomic tools to complete a
multi-step task, such as generating an entire story video.

C.3.1 VIDEO TOOLS

This core category encompasses functionalities for video creation, modification, and analysis.

Video Editing. Provides granular control over the visual elements within a video.

• swap object tool [Atom]: Swaps objects in a video with those from a reference image.

• repainting [Atom]: Repaints or replaces specific objects within a video.

• depth modify [Atom]: Edits the foreground or background of a video using depth infor-
mation.

• recolor [Atom]: Recolors an entire video or modifies the colors of specific regions.

• pose reference [Atom]: Transfers poses and movements from a source video character
to a new one.

• style transfer [Atom]: Applies a specified artistic style to a video.

Video Generation. Creates new video content from various inputs.

• text2video gen [Atom]: Generates short videos (approx. 5s) from text descriptions.

• image2video gen [Atom]: Generates videos from a text prompt and an image reference.

• video extension [Atom]: Extends a video by generating subsequent frames.

• frame2frame video gen [Atom]: Generates a video transitioning between a start and
end frame.

• storyvideo gen [Workflow]: End-to-end story video generation, including story-
board, characters, keyframes, and audio.

• entity2video [Workflow]: Generates a coherent video using a set of character images.

Video Tracking. Identifies and isolates objects or regions within a video.

• referring segmentation [Atom]: Segments video objects based on text prompts.

• video all segmentation [Atom]: Segments all detectable objects in a video and out-
puts their masks.

Video Understanding. Analyzes and extracts semantic information from video.

• vision2text gen [Atom]: Generates a textual description of a video’s visual content.

• video timestamp analysis [Atom]: Analyzes specific frames, with optional seg-
mentation for focused analysis.

• main object analysis [Atom]: Locates and describes the main objects in video
scenes.

• longvideo understanding [Workflow]: Analyzes long videos to provide detailed
summaries and insights.

C.3.2 NON-VIDEO TOOLS

This category includes functionalities for audio and image creation, editing, and synchronization.
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Audio Generation.

• video foley [Atom]: Create and sync sound effects (foley) to visual events.
• speech gen [Atom]: Generate speech from a text prompt.
• speech to text [Atom]: Transcribe speech to text with timestamps (ASR).
• voice clone [Workflow]: Clone a target voice from a few samples for later TTS.
• music gen [Atom]: Generate background music from text (mood, style, scene).

Image Generation.

• text2image generate [Atom]: Generate images from text prompts (e.g., mj-chat,
flux-kontext).

• image2image generate [Atom]: Generate a new image from a prompt conditioned on
an input image for style/identity consistency.

• image editing [Atom]: Edit existing images (inpaint, retouch, composite).

C.3.3 NON-AI TOOLS

This category provides deterministic utilities for cutting, merging, and augmenting video materials.

Video Cut.

• merge video [Atom]: Merge multiple clips into a single sequence.
• add transition [Atom]: Add transitions between clips (fade, wipe, slide).
• add subtitle [Atom]: Add subtitles.
• materials search [Atom]: Search royalty-free images/videos by keyword (e.g., Pix-

abay, Unsplash).

D UNIVA-BENCH

D.1 BENCHMARK DEFINITION

Motivation. Video intelligence in practice is an iterative, multi-stage creation process where users
interleave understanding, generation, editing, segmentation, and audio/asset composition within a
single workflow. However, most existing benchmarks largely isolate single tasks and single mod-
els, which underestimates the difficulty of long-horizon, multi-step video production and the need
for explicit planning, memory, and tool orchestration. Therefore, we introduce a unified agent-
oriented benchmark that covers four core video capabilities under multiple real-world conditions:
(i) Understanding, (ii) Generation, (iii) Editing, (iv) Segmentation.

UniVA-Bench shifts the focus from isolated single-model tasks to end-to-end, tool-augmented video
intelligence, aligning evaluation with real user workflows and the requirements of practical video
agents.

Tracks. The benchmark consists of two complementary tracks:

• Functional Modules: task performance across Understanding, Generation (LongText2Video,
Image/Entities2Video, Video2Video), Editing (long video edits with cross-shot consistency),
and Segmentation (long video segmentation with multi-entity occlusion).

• Agentic Probing: plan quality, dependency satisfaction, and re-planning robustness using
structured plan-level metrics; analysis of memory usage (trace, user, task/storyboard) and its
downstream impact.

What it evaluates. (1) Task competence on long-form video; (2) Multi-tool coordination and refer-
ential stability across shots/entities; (3) Planning structure and dependency coverage; (4) Effects of
memory on controllability, predictability, and recovery.
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GenerationUnderstanding

ü Information Synopsis

ü Transition

ü Shot Angle

What is this video mainly about?

At 00:01, how does the video transition from the view of Earth to the 
shot of the pool player? 

What type of camera angle is used for the break shot at 00:08, and what 
information does it primarily convey?

LongText2Video

⋮

Generate a 60-second short narrative video based on the following 
sequence. 1. Pre-dawn: close-up of a paint roller gliding over a 
cracked brick wall ……  5. Golden hour: unveiling—the crowd steps 
back …… reveals the mural anchoring the neighborhood skyline.

Given a video. Answer those questions below :

0–3s: A sunny beach scene shows a man throwing a stick into the 
waves, his dog eagerly …… 7–10s: The background shifts to a cloudy 
sky, the waves growing stronger as the wind picks up. ….

Video Rewritten

Editing

Segmentation

ü Story Alignment

ü Style Alignment

ü Semantic Alignment

Transform this animated cartoon video into a live-action cinematic style, 
maintaining the same narrative, character actions, and timing…

Based on the characters’ appearance, animation style, and cinematography 
of the given video, generate a sequel…

Keep the visual style of the original video (such as camera movement, 
editing rhythm, color grading), but change the story…

Editing Prompt: Change the man into a woman.

Segmentation a gold fish swimming towards the camera.

……

Entities2Video

Video2Video

Figure 13: Benchmark demo cases.

D.2 DATA CURATION

Understanding (Long-Video QA). We randomly sampled 10 videos from Video-MME Fu et al.
(2025) and used Gemini 2.5 Pro to generate multiple-choice QA pairs based on the perspectives
shown in Table 3. The task specifies that each video corresponds to 10 questions, and all answers
must be provided within a single inference.

Generation. In the data curation stage, for the LongText2Video task, we first use GPT to generate
a clear storyboard, then rewrite it into long and noisy prompts. For the Image/Entities2Video task,
we first sample 10 data points from Opens2v-nexus Yuan et al. (2025b). We then rewrite the original
prompts into longer and noisier versions.

For the Video2Video task, in order to better approximate real-world scenarios, we divide it into three
settings: Story alignment: Given a video, modify its style according to the prompt while keeping
all other aspects unchanged. Style alignment: Given a video, modify the storyline according to the
prompt while preserving the original video’s style, characters, and semantics. Semantic alignment:
Given a video, modify both the style and storyline according to the prompt while retaining the
original characters and other semantic elements (e.g., generating a sequel to the video). For each
task, we sampled 10 videos from SF20k Ghermi et al. (2024), then manually generate prompts for
each video.

Editing (Long Video). We sampled 10 videos from SF20k Ghermi et al. (2024), then manually
curated the editing prompt based on the content of the video.

Segmentation (Long Video). We randomly concatenated clips from DAVIS2017 Perazzi et al.
(2016), resulting in 10 segmentation task instances that involve occlusions and cover diverse scenes.

Agentic probing sets. We include (1) a 50-instance storyboard→user-intent planning set to com-
pare Single-Agent vs. Plan-Act, and (2) a set of standard pipeline tasks with expert references
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Table 3: Key dimensions for analyzing video shots and editing.

Category Dimension

Intra-frame

1. Shot Size
2. Shot Angle
3. Shot Location
4. Shot Subject
5. Shot Type (composition)
6. Shot Color (grading/tonality)

Intra-shot 7. Shot Motion (camera movement)
8. Shot Speed

Inter-shot 9. Cut Type
10. Transition

to assess wPED, DepCov, and ReplanQ under injected failures. Memory analyses consider trace
memory (historical trajectories), user memory (preferences), and task memory (e.g., storyboards).

D.3 METRICS

D.3.1 SUBJECT METRICS (TASK QUALITY).

CLIP Score (command following). Measures text-video alignment between the user instruction
(or storyboard-derived captions) and generated/edited outputs. We report the average CLIP similar-
ity over sampled frames/clips; higher is better.

DINO Score (subject consistency). Measures referential/identity stability by comparing DINO
features between reference entities (images/key frames) and generated/edited frames; the higher the
better.

Segmentation: J/F/mIoU. We report region (J-mean, IoU) and boundary (F-mean) quality, as
well as J&F-mean; higher is better.

Understanding score. Normalized accuracy over curated long-video QA pairs that span both se-
mantics and aesthetics (shot transitions, style, narrative).

D.3.2 MLLM AS A JUDGE (PREFERENCE).

To complement subject metrics, we perform pairwise preference judgments using an open-source
judge (e.g., InternVL-3-78B) and a closed-source judge (e.g., Gemini-2.5-pro). Judges are pro-
vided with the instructions, any relevant references, and debiased captions; preferences are aggre-
gated via majority voting, with ties being discarded. We report average preference rates and include
significance tests when applicable.

To ensure consistent and unbiased evaluation, we used a standardized prompt template for our
MLLM judge. The template was designed to be comprehensive and force a structured output.

MLLM Prompt

[System Role] You are a rigorous multi-modal video evaluation expert (MLLM as a judge).
Based only on the provided frames/timestamps and text/control information, evaluate a sin-
gle video with structured scoring and traceable evidence. Do not hallucinate unseen content.
C1. Semantic Content Accuracy (Objects & Scene) - What to check: Are the specified object
categories present and correct? Is the overall scene type (nature/city/indoor/outdoor/weath-
er/terrain) correct and stable? - Typical evidence: timestamps where required objects/scenes
appear (or fail), brief notes on correctness. - Anchors: 1: Objects/scenes largely wrong or
missing; persistent mismatch in most segments. 2: Frequent mismatches; objects or scene

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

type often incorrect or unstable. 3: Mostly correct but with noticeable lapses (e.g., brief
wrong class or scene drift). 4: Correct and stable with only minor slips in a few moments.
5: Fully correct and stable throughout; no contradictory frames observed.
C2. Multi-Object & Spatial Relations - What to check: Correct object count, arrangement,
occlusion, and relative relations (above/below, inside/outside, left/right, front/back) consis-
tent with perspective. - Typical evidence: frames showing relation satisfaction/violation
(e.g., “cup above plate”). - Anchors: 1: Major errors in count/placement; relations fre-
quently wrong or contradictory. 2: Multiple wrong relations or unstable layouts; occlusion
frequently implausible. 3: Largely correct with occasional conflicts or transient misplace-
ments. 4: Almost entirely correct; rare, minor inconsistencies. 5: Fully correct and stable;
relations clear and consistently maintained.
C3. Action / Behavior Accuracy (Human or Specified Agent) - What to check: If the prompt
specifies actions/poses (“running,” “waving”), are they clear, continuous, and recognizable?
If no action is specified, set null. - Typical evidence: timestamps covering onset/continuity/-
completion of the action. - Anchors: 1: Action absent or clearly wrong most of the time.
2: Frequent mismatches or fragmentation; hard to recognize the intended action. 3: Gener-
ally matches, but with noticeable distortions or brief interruptions. 4: Clear and continuous
match, with minor imperfections only. 5: Strong, consistent match; clear start-to-end execu-
tion with no ambiguity.
C4. Attribute Fidelity (Colors & Specified Attributes) - What to check: Specified attribute
values (color, pattern/material, key part attributes) are correct and temporally stable for the
intended targets. - Typical evidence: timestamps where attributes are accurate or drift (e.g.,
jacket color switches). - Anchors: 1: Attributes largely wrong or unstable; frequent drift
or contradictions. 2: Many errors or drifts; correctness not sustained over time. 3: Mostly
correct with occasional small drifts or brief miscoloring. 4: Accurate and stable with rare,
subtle deviations. 5: Fully accurate and stable across the evaluated span.
C5. Style Consistency (Appearance & Cinematic Movement) - What to check: (a) Visu-
al/appearance style (oil painting, cyberpunk, monochrome) matches the prompt AND re-
mains consistent; (b) Camera grammar/movements (zoom/pan/dolly/tilt, etc.) match the
prompt and remain consistent. - Typical evidence: timestamps showing style adoption/drift;
note which sub-aspect (appearance or camera) deviates. - Anchors: 1: Style severely mis-
matched or mostly absent; camera grammar opposite or missing. 2: Frequent mismatches or
drift in either appearance or camera style. 3: Generally matches with occasional drift or brief
instability. 4: Clear and consistent match with only slight, rare issues. 5: Fully consistent in
both appearance and camera grammar throughout.
C6. Overall Video–Text Consistency (set null if no text prompt) - What to check: Holistic se-
mantic alignment between video and text (theme, scene, actions, style coherence). This is a
summary dimension; do not double-count fine-grained issues already noted above. - Typical
evidence: timestamps representing core theme fulfillment or contradictions. - Anchors: 1:
Largely mismatched; core theme or requirements not met. 2: Many inconsistencies across
key elements (theme/scene/action/style). 3: Mostly correct with noticeable errors in sec-
ondary aspects. 4: Overall consistent with small mismatches that do not change the theme.
5: Highly consistent; strong semantic agreement with the text prompt.

D.3.3 AGENTIC METRICS (PLANNING & RECOVERY).

To quantitatively evaluate the agent’s planning capabilities, we designed three specialized metrics:
Weighted Plan Edit Distance (wPED), Dependency Coverage (DepCov), and Re-planning Quality
(ReplanQ). The precise definitions and calculation methods for these metrics are detailed below.

wPED (Weighted Plan Edit Distance) wPED measures the structural similarity between the se-
quence of tool names in an agent-generated plan (Ppred) and an expert-authored reference plan
(Pref ). The score is derived from the classic Levenshtein edit distance, denoted as L(A,B), which
calculates the minimum number of single-item edits (insertions, deletions, or substitutions) needed
to transform sequence A into sequence B.
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The wPED score is calculated by normalizing this distance and inverting the result, ensuring that a
higher score indicates a better alignment. The formula is:

wPED = 1− L(Ppred, Pref )

max(len(Ppred), len(Pref ))
(1)

A higher wPED score (closer to 1.0) signifies a closer structural alignment to the expert plan.

DepCov (Dependency Coverage) DepCov evaluates the logical correctness of a generated plan
(Ppred) by measuring its adherence to a set of fundamental, rule-based dependencies inherent to
video production workflows. Our evaluation is based on a predefined set of rules, such as the prin-
ciple that content generation must precede content editing.

Let D(Ppred) be the set of all dependency pairs (u, v) identified in the plan Ppred according to our
rules, where tool u must appear before tool v. Let Dsat(Ppred) ⊆ D(Ppred) be the subset of those
pairs where this ordering is correctly satisfied. DepCov is then the fraction of satisfied dependencies:

DepCov =
|Dsat(Ppred)|
|D(Ppred)|

(2)

A higher DepCov score indicates that the agent’s plan is more logically sound and respects the
procedural constraints of the task.

ReplanQ (Re-planning Quality) ReplanQ measures the agent’s ability to efficiently and effec-
tively recover from a simulated execution failure. The metric is designed to reward intelligent,
minimal plan modifications.

Let Porig be the agent’s initial plan, and let the failure occur at index i. The agent then generates a
revised plan, Preplan. We compare the suffixes of both plans starting from the failure point, denoted
as Porig[i :] and Preplan[i :]. ReplanQ is calculated using the same normalized Levenshtein distance
as in wPED, applied only to these suffixes:

ReplanQ = 1− L(Porig[i :], Preplan[i :])

max(len(Porig[i :]), len(Preplan[i :]))
(3)

A higher ReplanQ score (closer to 1.0) indicates a more efficient and robust recovery, suggesting
that fewer changes were required to correct the plan after the failure.

D.3.4 REPORTING PROTOCOL.

For Generation/Editing, we report CLIP, DINO, and MLLM preference; for Segmentation, J/F/J&F;
for Understanding, normalized QA accuracy. For agentic probing, we report wPED/DepCov/Re-
planQ with and without memory (trace/user/task) and compare the Single-Agent framework with
the Plan-Act framework.

E DETAILED EXPERIMENT SETTINGS

E.1 UNIVA’S CONFIGURATION

Plan Agent: Claude-sonnet-4, Act Agent: Claude-sonnet-4, Video Generation Model: Seedance-v4-
480p, Video Understanding Model: InternVL3-38B, GPT-5, Video Editing: Runway Aleph, Video
Segmentation: SAM-2, Image Generation Model:flux-kontext-pro

E.2 BASELINE CONFIGURATIONS

Generation For all video generation tasks, we standardized the output resolution to 480p and a
frame rate of 24 fps to ensure a fair comparison. For baselines that natively lacked support for
multi-image or video-conditioned inputs, we implemented a standardized pre-processing pipeline to
bridge the capability gap:

• For the Entities2Video task, where some baselines only accept a single image, we first merged
the multiple input reference images into a single composite image. This composite was then
used as the input.
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• For the Video2Video task, for text-only baselines, we first employed a video captioning model
(Qwen2-VL-72B) to generate a detailed description of the source video. This generated cap-
tion was then prepended to the user’s instruction prompt to guide the generation process.

The specific baseline models were configured as follows:

• LTX-Video: We utilized the official model and followed the recommended settings provided
in their public repository.

• Seedance: We used the seedance-v1-pro-t2v-480p and seedance-v1-pro-i2v-480p from
Wavespeed API, consistent with our UniVA’s generation module, to ensure a direct compari-
son of the agentic framework’s contribution.

• Wan: We used the wan-2.2/t2v-480p and wan-2.2/i2v-480p also via the Wavespeed API.

Understanding. For all the understanding tasks, we are using a frame rate of 1 fps and a maximum
of 128 frames.

Editing. For the video editing task, we use Runway Aleph as the baseline model. In the baseline
pipeline, videos are clipped into 5-second clips and sent to the Aleph model with a task prompt.
Then, the edited video clips are merged together for evaluation.

Segmentation. For the video segmentation task, we use Sa2Va-4B as the baseline model, we
directly send the video into the baseline model together with the segmentation prompt.

F ADDITIONAL QUALITATIVE CASE STUDIES

0–3s: A man walks down a bustling city street at night, illuminated by vibrant neon lights and signs. He is dressed in a formal suit and 
tie, holding a smartphone, engrossed in its screen. The background features tall buildings with lit-up windows, creating a lively urban 
atmosphere. 3–7s: The camera slowly zooms in on the man’s face, capturing his focused expression as he types on his phone. The 
neon lights reflect faintly on his glasses. …… 21–25s: The camera returns to the man, now seated on a bench in the park, still 
holding his phone but looking more relaxed. The city skyline is visible in the distance, blending the urban and natural elements. 25–
30s: The camera slowly zooms out, showing the man in the peaceful park setting as the city awakens in the background, completing
the visual and narrative transition.

Figure 14: UniVA maintains the protagonist’s identity flawlessly across drastically different scenes,
lighting conditions (night vs. day), and camera angles, showcasing its advanced capability for robust,
long-form character preservation.
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Recreate a new video that mirrors the original’s style—cinematic transitions, lighting, pacing, and tone—but tells the story of an elderly man reliving his youth 
through a dreamlike journey across time.

Figure 15: UniVA interprets an abstract prompt to generate a complex narrative. It orchestrates
a non-linear story arc, proving its capability as an intelligent storyteller powered by sophisticated
planning.
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